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ABSTRACT 

 

One of the United States Navy Oceanographic community’s roles is to keep an accurate 

worldwide database of oceanic bathymetry.  In the littoral zones, much of the data is out of date 

or is unavailable.  Stuffle et al. (1996) utilized a method addressing shallow water areas using the 

Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor on a small region in 

Lake Tahoe.  As a follow-on, this work used a different sensor, the Airborne Visible/InfraRed 

Imaging Spectrometer (AVIRIS) sensor, and covered a much larger area on the opposite side of 

the lake.   Principle components analysis (PCA) of the region of interest (ROI) revealed nine 

spectrally unique water classes.  A priori knowledge of one bottom type in this ROI allowed 

insertion of a known bottom reflectance spectrum into a derived computer algorithm that, using 

also diffuse attenuation coefficients from HYDROLIGHT and reflectance just below the water 

surface derived from AVIRIS data, allowed computation of the bottom depth.  Results compared 

within 30% of depth from a USGS bathymetric chart.  This method holds much promise in clear 

waters, and next needs to be tested in the coastal ocean environment. 
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I. INTRODUCTION 

 The Meteorology and Oceanography Community (METOC) of the United States 

Navy is tasked with the role of obtaining, storing, and updating a worldwide database of 

ocean bathymetry, known as the Digital Bathymetric Data Base (DBDB).  The Office of 

Naval Research uses the DBDB as an input for various modelling algorithms (acoustic 

prediction, tide and surf forecasting, weapon systems); for planning charts (command and 

control, mission planning, tactical decision aids); and for coastal zone management, 

environmental monitoring, engineering/construction, and resource development/exploration.   

 Many coastal areas of the world have never been fully surveyed, and many that have 

are seriously outdated.  Stuffle et al.  (1996) utilized a method addressing these shallow water 

areas using hyperspectral data collected over a small region of Lake Tahoe.  This work 

consisted of isolating different “classes” of water, unmixing the various contributions to 

sensor radiance, inverting the radiative transfer equation, and solving for the water depth.  As 

a follow-on, this work will apply a similar method using data collected from a different 

sensor and from a much larger area on the opposite side of the lake.  The purpose is to assess 

the applicability of this method to a different and much larger region using a different sensor.   

 The problem.  When a airborne or satellite sensor “looks” at a pixel of water on the 

earth, it “sees” upwelling irradiance.  If broken down to values at each wavelength, and then 

plotted as a continuous curve across all of these wavelengths, a continuous radiance spectrum 

is created.  This spectrum has a story to tell – it is a summation of contributions made by 

atmospheric backscattering, absorption by chlorophyll, bottom reflectance, etc.  The problem 

is to unmix these various components, isolating each one.  Theoretically, using the radiative 
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transfer equation, absorption and scattering in the water column under the pixel can then be 

determined. 

 The focus of this thesis is to determine the water depth, assuming other properties are 

known or can be estimated.  These other properties can come from a variety of sources.  For 

example, atmospheric radiative transfer models can provide sky radiance contributions; in-

situ measurements can provide chlorophyll concentrations; etc.  Once the above properties 

are known, the “inverse method” is applied, solving the radiative transfer equation for the 

desired variable. 

 Many years of research have gone into solving the many facets of this complex 

problem – after all, the variability of these parameters is tremendous in three-dimensional 

space and time in the littoral zone.  Various algorithms are being tested, however none is 

“perfect” so far.  The culmination of the Navy’s efforts is going into the Hyperspectral 

Remote Sensing Technology (HRST) project, which is discussed briefly in Chapter IV.  Only 

time will tell the accuracy and applicability of these methods to large-scale areas of the 

Earth’s littoral zones. 

 What follows are background information, including the optical properties of water 

and the radiative transfer equation, (the problems unique to the coastal zone), and a depth-

derivation scheme applied to a portion of Lake Tahoe.  This is followed by a comparison of 

the output to a United States Geological Survey (USGS) bathymetry chart, possible error 

sources and limitations of this method, and a brief discussion on future endeavors and 

research.   
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II. THE WATER COLUMN 

 Central to unmixing spectra seen over water is understanding how light is affected in 

the water column, meaning that volume or “column” of water under each pixel.  Significant 

portions of Mobley (1994) are used in this section to provide background information on how 

light is affected in the water column. 

A. OPTICAL PROPERTIES OF WATER 

All natural waters, especially the euphotic zone of littoral waters, show great 

variations in the nature and concentration of organisms, particulates, and dissolved 

substances.  Hence these biological, geological, and chemical “bulk” properties will vary 

spatially and temporally.  For convenience, these are divided into two distinct classes, 

inherent and apparent.  A brief summary follows. 

1.   Inherent Optical Properties (IOPs).   

These properties depend on the medium only, and are independent of the 

surrounding light field.  There are numerous properties, but of particular interest are the 

spectral absorption and scattering coefficients.  The spectral absorption coefficient, a( )λ , is 

the fraction of incident power at wavelength λ that is absorbed per unit distance in the 

medium.  The spectral scattering coefficient, b( )λ , is the fractional part of the incident power 

per unit distance that is scattered out of the beam.  Together, a( )λ  and b( )λ  sum to form the 

beam attenuation coefficient, c( )λ : 

   c a b( ) ( ) ( )λ λ λ= +       (2.1) 
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IOPs are measured from water samples and are difficult to measure in situ. 

2.   Apparent Optical Properties (AOPs).   

These properties depend on both the medium and the directional structure of the 

surrounding light field.  An AOP must also be independent of environmental parameters, 

such as sea state.  There are several AOPs, but two are of particular importance to the 

bathymetry problem: spectral irradiance reflectance, ( ; )sR z λ , and spectral remote-sensing 

reflectance, R . 

Spectral irradiance reflectance, ( ; )sR z λ , is the ratio of spectral upwelling to 

spectral downwelling irradiances across a horizontal plane, at a depth z : 

   
( )
( )

;
( ; )

;
u

s
d

E z
R z

E z
λ

λ
λ

=       (2.2) 

This parameter is usually evaluated at the water’s surface, where 0z = .  An associated 

parameter is the directional water leaving radiance, L . 

Figure 2.1 pictorially represents the relationship between L , dE , and uE .  The 

variable θ  represents the vertical angular displacement from a normal line to the plane, 

measured counterclockwise from the z−  direction; φ  is the horizontal angular displacement, 

measured counterclockwise from the x+  direction. 

Spectral remote sensing reflectance, R , is the ratio of upwelling or “water-

leaving” radiance, wL , to spectral downwelling plane irradiance, Ed , evaluated just below the 

water’s surface ( )0z = − : 
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  ( ) ( )
( ), ;

0 ; , ;
0

0 ;
w

d

L z
R

E zθ φ λ

θ φ λ
λ

= −
− =

= −
 .   (2.3) 

 

( ) , ;
0R

θ φ λ
−  is merely a measure of what portion of the downwelling light, after penetrating 

the surface of the water and interacting with the constituents of the water column and bottom, 

is returned through the surface in the direction θ φ,a f  so that (in this case) a hyperspectral 

sensor can detect it. 

 
Figure 2.1.  Pictoral representation of uE , dE , and L , in Relation to a horizontal plane.  Note 

that L  is merely uE  or dE  in one solid angle, ( ),θ φ . 
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B. SPECTRAL DIFFUSE ATTENUATION COEFFICIENT AND JERLOV 

WATER TYPES 

 Near the middle of the water column (away from the boundary effects of the surface 

and bottom), sunlight and sky radiances and irradiances decrease approximately 

exponentially with depth.  Therefore the depth dependence of spectral downwelling 

irradiance, E zd ;λa f, may be written as: 

   ( ) ( ) ( )
0

2 ;
; 0;

z

dK z dz

d dE z E e
λ

λ λ
−∫=     (2.4) 

 K zd ;λa f  is the spectral diffuse attenuation coefficient for spectral downwelling plane 

radiance.  Therefore, 

  K z
E z

dE z
dzd

d

d;
;

;
λ

λ
λa f a f

a f
= −

1
    (2.5) 

Smith and Baker (1978) discuss some useful properties of Kd : 

 

• Kd  is strongly correlated with phytoplankton chlorophyll concentration, thus 

providing a connection between biology and the marine optical properties 

• Approximately 90% of the diffusely reflected light from a water body comes from a 

surface layer of water of depth 
1

Kd

 

• Kd  is related to AOPs, such as absorption coefficients, through the radiative transfer 

theory. 
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 In homogeneous waters, Kd  depends weakly on depth and therefore can serve as a 

good descriptor of the water body.  Kd  varies with wavelength over a wide range of waters, 

and for this reason is regarded as a “quasi-inherent optical property” – it is governed by 

changes in the water body IOPs and not by the external environment. 

 Jerlov (1976) developed a classification scheme for oceanic waters based on the 

spectral shape of Kd .  Open-ocean waters are numbered I, IA, IB, II, and III; with type I 

being the clearest and type III being the most turbid.  Coastal waters are numbered 1 through 

9, with 1 being the clearest and 9 being the most turbid. 

C. CONSTITUENTS OF OPTICAL SIGNIFICANCE IN NATURAL WATERS 

 Natural waters are comprised of numerous organic and inorganic dissolved substances 

and particles.  The size, type, and distribution of these particles make the bathymetry problem 

especially complex.  A brief discussion of the particle types and their effects on visible light 

follow. 

1.   Dissolved substances 

a) Salts 

The average salinity of seawater is 35.  These dissolved salts increase 

scattering by 30% over pure water, but have a negligible effect on absorption. 
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b) Organic compounds 

Organic compounds found in water are called yellow matter, or CDOM 

(colored dissolved organic matter).  They are produced from the decay of plant matter, and 

are generally brown in color and found in high concentration in the euphotic zone of littoral 

waters.  CDOM is a significant absorber in the blue wavelengths of visible light, and 

becoming less absorbing toward the red. 

2.   Particulate matter 

a) Inorganic 

These particles appear in the water column from wind-blown dust, river 

outlets, or disturbing bottom sediments from currents or wave action.  Inorganic particles 

consist mostly of finely ground quartz sand, metal oxides, and clay minerals.  Depending on 

the concentration and distribution, these particles can have a nil effect on the ambient light 

field or can scatter light greatly. 

b) Organic 

Organic particles include viruses, colloids, bacteria, phytoplankton, organic 

detritus, and zooplankton.  These particles again vary significantly in size, concentration, and 

distribution, but all of these except phytoplankton are major scatterers of visible light.  

Phytoplankton itself is a strong absorber in the blue and red, peaking at λ = 430 nm and λ = 

665 nm.  Therefore, phytoplankton is primarily responsible for determining the optical 

properties of most oceanic waters.  Chlorophyll concentration essentially describes the sum 
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of chlorophyll pigments in phytoplankton.  It varies from 0.01 mg/m3 in the clearest open-

ocean waters to 10 mg/m3 in productive coastal upwelling regions, to 100 mg/m3 in eutrophic 

estuaries or lakes.  The global open-ocean average value is near 0.5 mg/m3. 

A clear representation of the effects of various water constituents is seen in the 

different spectral curves of Figure 2.2, which specifically show the variation in remote 

sensing reflectance just below the water surface, ( )0R − , for various water types.  Of 

particular note is the reflectance in the green/yellow and red bands for eutrophic waters. 

 

 

Figure 2.2.  Figure 1 from Dekker et al.  (1997), showing that eutrophic (plankton-rich) and 
humic (sediment-rich) waters are particularly highly reflective in the red bands of visible 
light. 
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D. THE COASTAL ENVIRONMENT 

 This section, provided only as supplemental information to optical water property 

studies, does not apply to data taken at Lake Tahoe, as it is an alpine lake with few of the 

dynamic processes seen in the ocean.  However, this section provides background 

information about some of the properties that must be considered when applying data 

analysis in the littoral regions of the oceans. 

 The coastal environment varies significantly from the open ocean in many ways.  This 

is a region where hydrostatic conditions do not apply, where turbulent motions affect the 

entire water column, and where significant concentrations of biological constituents exist. 

 The Sea Star satellite’s Sea-viewing WIde Field-of-view Sensor (SeaWIFS) is a 1.1 

km spatial resolution multispectral sensor designed to distinguish between subtle color 

variations of the Earth’s oceans.  Algorithms are used to derive chlorophyll concentration and 

Kd  at 490 nm, making this sensor a good resource for determining not only the optical 

properties of water, but also variations in chlorophyll concentration over the open ocean.  

SeaWIFS, using 6 visible and 2 near infrared (NIR) channels, is accurate over the open 

ocean, where the water is dark in the NIR channels.  However, there are limitations to the 

SeaWIFs algorithm in coastal and inland waters as discussed in De Haan et al.  (1997).  

These waters contain suspended sediments and macrophytes, each with their own spectral 

scattering and absorption properties 

 Sea grass.  Plummer et al.  (1997) performed an extensive sensitivity analysis on the 

effects of sea grass on the upwelling radiance of light.  Five parameters were used: leaf-area 

index (LAI), turbidity, chlorophyll concentration, yellow matter concentration at nadir 
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(g440), and depth of water.  LAI is directly proportional to the area of the sea grass leaves.  

The results are shown below in Figure 2.3.  The results show that subsurface reflectance from 

sea grass depends most strongly on depth of the water, second on turbidity, and third on LAI.   

 Kruse et al.  (1997) discuss analysis techniques of hyperspectral data for use in 

studying coastal environments.  Figure 2.4 shows the wide variations of reflectance spectra 

found in coastal regions, collected from the Airborne Visible/InfraRed Imaging Spectrometer 

(AVIRIS) hyperspectral sensor over Florida Bay. 

 

 

Figure 2.3.  Figure 1 and Table 1 from Plummer et al. (1997), showing the effects of sea grass 
on the reflectance of light.   Leaf Area Index (LAI), turbidity, chlorophyll, yellow matter at 
nadir (g440), and depth all contribute to unique reflectance curves for each given scenario. 

 

Scenario LAI Turbidity Chlorophyll G440 Depth 
1 2.95 4.20 6.70 0.32 1.17 
2 2.36 7.77 13.49 0.68 2.32 
3 1.11 1.94 13.11 0.92 1.01 
4 2.38 5.44 8.98 0.99 1.86 
5 2.30 8.76 17.54 1.00 2.06 
6 0.80 0.77 7.46 1.03 2.30 
7 1.75 9.19 12.13 0.61 0.44 
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ID Description 

6 Blue-green algae 1 

11 Blue-Green algae 2 

16 Blue-green algae 3 

17 Dense near-surface 
phytoplankton 

33 Combination dilute 
phytoplankton/sea 

grass 

36 Sea grass 

10 Clear water over 
sediment 1 

40 Clear water over 
sediment 2 

31 On-shore vegetation 

23 Sand/exposed sediment 

 

 

 

 

 

Figure 2.4.  Modified Table 2 
and Figure 6 from Kruse et al.  
(1997), showing selected 
endmember spectra from 
AVIRIS data of Florida Bay.  
Notice the wide variation in 
water radiance values for 
different constituents. 
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E. THE RADIATIVE TRANSFER EQUATION 

 A brief background on the Radiative Transfer Equation (RTE) as it applies to 

bathymetric work is presented.  Mobley (1994) derives the radiance observed at a remote 

detector, Ld , for the case of an instrument viewing a water scene:  

   L T L L Ld a w ws p= + +b g ,    (2.6) 

where the symbols are defined in Figure 2.5.  We are interested in Lw , the water leaving 

radiance term, also known as the volumetric contribution to dL .  as seen in figure 2.5, this 

term consists of contributions from both the bottom reflectance, dA , and the water column 

itself, wR . 

 Bierwirth et al.  (1993) used a simplified form of the Radiative Transfer Equation 

(RTE) for the study of light emerging from a shallow body of water.  When Lw  is divided by 

the incident irradiance on the water surface, the irradiance reflectance just below the water 

surface is obtained: 

  ( ) ( ) 20 dK z
d w wR A R e R−− = − +    (2.7) 

Note how the first term decays exponentially with depth, implying that for deep water, only 

the water column itself will contribute to R 0 −a f .  Another implication of this relation is that 

the bottom reflectance will play an important role in determining R 0 −a f . 
 To derive water depth z , Equation 2.7 is inverted and summed over n bands or 

wavelengths to solve for depth: 

   
( ) ( )

1

ln ln 0

2

n
d w w

d

A R R R
z

nK
λ λ λλ

λ=

  − − − −  =  
  

∑    (2.8) 
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 In order to maintain a positive value for each logarithm in Equation (2.8), Stuffle et al.  

(1996) notes that over a dark bottom, the terms of each logarithm reverse, as wR  becomes the 

dominant term.  Note that radiance terms must be converted to reflectance terms to use 

Equation 2.8. 
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Visible Light Path From Sun to AVIRIS Sensor 
 

 

AVIRIS

Atmosphere

Water Surface

Substrate

Sun

dL

TL

pL

uE

wsL

θ

dE

AE

0E

wR
( )0 −R

dA

wL

aT

 

dA  Bottom irradiance reflectance 

( )0 −R  Irradiance reflectance just 
below the water surface 

wR  Water column irradiance 
reflectance  

wsL  Reflected radiance from water 
surface 

0E  Solar illumination at the top of 
the atmosphere 

aT  Atmospheric transmittance 

AE  Diffuse sky irradiance 

pL  Atmospheric path radiance 

TL  Target radiance transmitted by 
the atmosphere 

dL  Radiance received at the sensor 

dE  Downwelling irradiance 

uE  Upwelling irradiance 

wL  Water-leaving radiance 

θ  Slant path 

Figure 2.5.  Modified from Bierwirth et al. (1993) Figure 1, showing the multiple absorption 
and scattering paths that visible light undergoes before reaching the AVIRIS sensor. 
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III. DATA AND METHODS 

 A background on four topics of data collection and analysis will be discussed before 

proceeding to the actual data and methods.  These topics include hyperspectral imaging and 

the AVIRIS sensor, principle component analysis, the MODTRAN atmospheric model, and 

the HYDROLIGHT water model.  This will simplify our understanding of the steps that 

follow.  The goal is to determine the values of the 4 variables, dA , wR , ( )0R − , and dK  in 

Equation 2.8, applied to each pixel, thereby obtaining the depth at each pixel. 

A. TOOLS AND TECHNIQUES 

1.  The AVIRIS sensor  

Imaging spectroscopy in general is the procedure of measuring the energy in 

numerous spatial resolution elements arriving at a sensor, and converting them to an image.  

By taking these measurements in very small bandwidths, say on the order of 10 nm, one can 

arrive at a nearly continuous spectrum for each pixel.  If the pixels are small enough, they 

will essentially represent one element of an entire image or “scene”.  And, since each 

substance has a unique “fingerprint” or energy spectrum, one can theoretically determine 

which substances are in the scene based on the energy return at a sensor.  Lewotsky (1994) 

presents an excellent history of imaging spectroscopy, and the evolution from multispectral 

imagers (with spectral resolutions of 100 to 200 nm) to hyperspectral imagers. 

Hyperspectral imagers take advantage of narrow bandwidths (“hyper” meaning 

“many bands”).  Stuffle et al.  (1996) used the Hyperspectral Digital Imagery Collection 
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Experiment (HYDICE) sensor to study the Secret Harbor area on the eastern side of Lake 

Tahoe.  On the same day that HYDICE data was taken, June 22, 1995, the AVIRIS sensor 

was flown over the same region of the lake.  Johnson and Green (1995) describe AVIRIS as a 

nadir-viewing whiskbroom scanner containing 224 different detectors, each sensitive within a 

unique 10-nm bandwidth across the visible and near infrared (NIR) wavelengths of 

electromagnetic radiation, specifically 400 to 2450 nm.  The AVIRIS takes an image with a 

swath of width 11 km, and typically 10-100 km long, partitioning the scene into pixels 

approximately 20 m by 20 m.  AVIRIS is aggressively calibrated.  In flight, this is done from 

a continuous spectral and radiometric reference.  Twice per year AVIRIS is calibrated in the 

lab, where all aspects of AVIRIS data are compared to laboratory standards.  Three times per 

year AVIRIS is calibrated in flight where performance is compared to theoretical predictions 

based on atmospheric measurements, surface reflectance measurements, and radiative 

transfer models. 

2.  Principle Component Analysis (PCA)  

When looking at a hyperspectral image of an unfamiliar area, one needs to 

determine what components make up the scene, whether it be trees, rocks, water, etc.  One 

technique of doing this is called Principle Components Analysis (PCA).  Stefanou (1997) 

explains this procedure in detail.  Essentially, a high correlation exists between adjacent 

bands in spectral imagery, and therefore a great deal of redundancy exists.  PCA transforms 

these spectra to a new coordinate system, called N-dimensional or PC (Principle Component) 

space, so that the spectral variability is maximized.  Mathematically, PCA diagonalizes the 

covariance matrix of the data by unitary transform, which identifies the combinations of 
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variables most responsible for the variances in the image.  Then, the resulting eigenvectors 

are applied to each pixel vector, transforming it into a new vector with uncorrelated 

components ordered by variance.  These eigenvectors act as weights to the original pixel 

brightness values.  Applied to the 224 AVIRIS bands, a new image results associated with 

each eigenvector, called a principle component image or PC band.  The set of PC bands are 

ordered from largest to smallest in terms of variance.  For example, if a hyperspectral image 

is divided into ten PC bands, PC band 1 will contain most of the information about a scene, 

whereas PC band 10 will contain little.  Throughout the remainder of this work, “real band” 

refers to one of the 224 AVIRIS bands, whereas “PC band” refers to the image after rotation 

into principle components. 

3.  Moderate Resolution Transmittance (MODTRAN)  

The radiance received at the AVIRIS sensor is comprised of numerous 

components, including atmospheric scatter and upwelling surface irradiance.  For the 

bathymetry problem, the atmospheric return components are considered as “noise”, which 

must be “subtracted” out of the sensor-received radiance to reveal the water-leaving radiance.  

A model-based solution to this problem is to use a computer code called the MODerate 

Resolution TRANsmittance (MODTRAN) code.  MODTRAN was developed by the 

Geophysics Division of the Air Force Phillips Laboratory; it calculates atmospheric 

transmittance and radiance from wavenumbers 0 to 50,000 cm-1.  The effects of absorption 

and scattering by molecules and aerosols are all integrated into this model.  MODTRAN is 

operated using a number of input “cards” or lines of FORTRAN code, which the user must 
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modify to fit the problem.  Nominally, card 1 is the atmospheric definition, card 2 the 

meteorological definition, card 3 the sensor placement, and card 4 the model resolution.   

4.  HYDROLIGHT 

HYDROLIGHT, developed by Dr.  Curtis D.  Mobley, is a radiative transfer 

model that computes radiance distributions and derived quantities for natural waters, with the 

default model being salt water.  Input to the model consists of the absorption and scattering 

properties of the water body, sea surface and bottom characteristics, and the sun and sky 

radiance incident on the sea surface.  Output can be various irradiances, K -functions, and 

reflectances.  Of importance to this work is obtaining a dK index output.  Mobley (1995) 

specifically notes that HYDROLIGHT is a radiative transfer model, and not a model of 

optical properties of water.  Therefore, the user must supply the IOPs to the HYDROLIGHT 

code (HYDROLIGHT has a number of sub-models of water IOPs, though).   

5.  Summary 

In summary, there are four steps to derive shallow water bathymetry using 

Equation 2.8.  First, processing the AVIRIS hyperspectral data using the ENvironment for 

Visualizing Images (ENVI) software yields the bottom reflectance, dA , one of the two 

volumetric components.  Second, the HYDROLIGHT algorithm gives the diffuse attenuation 

coefficient, dK .  Third, MODTRAN solves for the various atmospheric components pL , dE , 

and aT .  These variables and Equations 2.3 and 2.6 will permit computation of ( )0R −  

directly; however, a different method for computation of ( )0R −  will be used in this analysis.  
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Finally, a separate computer algorithm assimilates all of these variables and solves for depth 

based on the reflectances.   

B. THE SCENE 

 On June 22, 1995, the AVIRIS was flown on board an ER-2 aircraft at 2.35 km above 

Lake Tahoe, CA and NV, along the track shown in Figure 3.1.  The instrument took data in 8 

different scenes along that path.  The resultant composite of three of these scenes is seen in 

the top portion of Figure 3.2.  A portion of scenes 2 and 3 in the image were extracted to form 

a 531 by 614 pixel image that was analyzed.  Of particular interest to this work is the region 

on the west side of the lake, bordering Tahoe City to Dollar Point, CA.   
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Lake Tahoe, Ca & NV

 
 

Figure 3.1.  Lake Tahoe images from 
http://tahoe.usgs.gov/Tahoe.  The above 
figure is derived from a USGS LANDSAT 
image taken in 1990.  The AVIRIS footprint 
is shown in the white box for the June 22 
1995 collect.  The figure to the right shows 
the map coordinates 
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Figure 3.2.  The top figure shows 3 frames of data from AVIRIS, created from the visible  
bands 28, 18, and 8, corresponding to 647.65 nm, 549.23 nm, and 451.22 nm, 
respectively.  The dynamic range was scaled to allow details of the underwater structure 
to be revealed.  Note the contamination of the data from the middle of the lake, apparently 
by a cloud reflecting off the water.  Also, along the top edge of the image in the water is 
sunglint.  The bottom figure on the left is the portion of the scene analyzed.  On the 
bottom right is an Automobile Association of America (AAA) map showing the locations 
of nearby cities.   
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C. PROCESSING THE AVIRIS DATA TO SEGMENT THE SCENE 

 A first approach to the spectral data is to use principal components analysis to quickly 

distinguish the spectral regions, and determine the nature of any obvious sensor artifacts.  

Starting with a forward rotation, 10 PC bands were produced (see Figure 3.3).  PCA was 

done here to determine spectrally unique regions of interest (ROI).  The concept is that each  

 

 

  
PC Band 1 PC Band 2 

  
PC Band 3 PC Band 4 

Figure 3.3.  PC Bands 1-4, rotated 90° clockwise. 
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PC Band 5 PC Band 6 

  
PC Band 7 PC Band 8 

  
PC Band 9 PC Band 10 

Figure 3.3 (continued).  PC Bands 5-10. 



26 

ROI is spectrally unique due to one bottom type (or water type) throughout the region.  For 

example, regions of distinct particulate or chlorophyll concentration should be separable.  In 

this limited region, it appears that the water in the scene could be considered homogeneous in 

chlorophyll and particulate concentration throughout the region.  Therefore, the PCA 

permitted isolation of unique bottom types and apparently a small oil slick.  Then, based on 

visible images, such as that in Figure 3.2, PC band images (Figure 3.3), and/or a priori 

knowledge, a corresponding bottom substrate was inferred.  With the distinct regions defined, 

it should be possible to use the “at-sensor” radiance, dL , and perhaps a spectral library or 

database, applied to the ROI, to determine the bottom reflectance dA  for that region.   

 To segregate spectrally unique ROIs, first the 10 PC bands are input to an N-

dimensional visualizer, where various combinations and numbers of PC bands are put into PC 

space and rotated in n dimensions.  The extrema of the distributions, called endmembers, can 

be found in an iterative process.  These are nominally the pixels with the purest spectral 

signatures.  Pixels located in between two or three extrema are a linear combination of each 

extremum.  In the work by Stuffle, this process could determine the pixels near the surface, 

that is, nearly pure “bottom” pixels, without a volumetric water element. 

 Figure 3.4(a) shows PC Band 1 with different ROIs highlighted in red.  These regions 

were chosen from looking at both the “real” and PC Band imagery, and selecting interesting 

areas.  Now, the red ROIs and corresponding portions of the 10 PC bands are then input to an 

N-dimensional visualizer, where various combinations of three PC bands are put into PC 

space and rotated in three dimensions.  Figure 3.4(b) is a snapshot of a N-dimensional 

visualizer run using PC Bands 1, 3, and 5.  In this snapshot, it is clear that three extrema 
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emerge, and hence three endmembers result.  The extrema are colored as in Figure 3.5(a), and 

exported to the actual PC image, indicating different regions of interest (ROI).  [See Figure 

3.5(b).]  Now a first guess on bottom type is made, based on the real band composite in 

Figure 3.2 and the PC Bands in Figure 3.3. 

 

 

Figure 3.4.  (a) PC band 1, showing the four ROIs chosen in the scene.  (b) N-dimensional 
visualizer snapshot of the ROIs in (a) rotated in PC space using PC band 1, 3, and 5.  Note 
the three distinct extrema on the scatter plot – these are the endmembers or classes. 
 

 The colors chartreuse, thistle, and coral appeared to be associated with shallow water, 

deep water, and sunglint, respectively.  Now, Figure 3.5(a) is rotated again in PC space, using 

various combinations of three bands.  When PC Bands 2, 3, and 9 are rotated, with the 

endmembers already defined from Figure 3.5(a), the snapshot in Figure 3.6(a) is obtained.  

One can still notice the small areas of the original endmembers. 

 Thistle comprises just a small piece of a unique cluster, and chartreuse is found 

throughout the upper portion of this highly linear scatter plot; those two areas are “filled” in 
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with their representative color, and the remainder is assigned to coral, the sunglint area, as 

seen in Figure 3.6(b).  In addition, Figure 3.7 shows the corresponding endmembers as they 

Chartreuse

Coral

Thistle

 
Figure 3.5 (a) (left) The three endmembers are colored chartreuse, coral, and thistle.  (b) 
(right) The corresponding locations of the 3 endmembers from (a) transposed to PC Band 1.  
Based on the visual imagery, a first “guess” would be that coral corresponds to sunglint, 
chartreuse to shallower water areas, and thistle to deeper water areas. 

 

Chartreuse

Coral

Thistle  
Figure 3.6 (a) (left) Derived from taking Figure 3.5(a), changing to PC Bands 2, 3, and 9, and 
rotating to the given position.  The thistle area is a small part of a much larger cluster.  Coral 
is found within one narrow area, and chartreuse appears to dominate the upper portion of this 
linear scatter plot.  (b) (right) The regions of (a) are “filled in” with their representative color. 
 



29 

make up the original ROIs, once exported back to the PC image in Figure 3.4(a).  At this 

point, it is assumed that three main water types comprise most of the given ROIs.  However, 

it was noticed that a variety of colors appear in the real band image of Figure 3.2.  So, we  

 
Figure 3.7.  Figure 3.6(b) is transposed to the ROIs of Figure 3.4(a).  Now, these original 
ROIs are divided into 3 basic water types, or classes. 
 

came to the conclusion that the first “sum” of PCA classification on the shallower regions of 

water is not complete – a second iteration must be done to further isolate those smaller 

regions of spectrally unique water types.  Since the thistle-colored points (deeper water) 

comprised most of the ROIs, it is desirable to look at the smaller endmembers (chartreuse and 

coral) to determine if more endmembers or structure in the scatter plots can be observed.  

This would lead to further subdivisions into new and different endmembers, and hence water 

types.  So, the chartreuse (shallower water) was isolated and run though the N-dimensional 

visualizer, using PC Bands 2, 3, and 9, obtaining a scatter plot as seen in Figure 3.8(a).  
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Figure 3.8 (a) (left) A scatterplot in PC space using just the chartreuse pixels from Figure 3.7, 
and using PC bands 2, 3, and 9.  (b) (right) Three new endmembers emerge.  All three new 
classes – blue, purple, and yellow - correspond to different areas of shallow water. 
 

Figure 3.8(b) shows three distinct endmembers in this scatter plot.  The 3 endmembers are 

transposed to PC Band 1 in  Figure 3.9.  Yellow appears to correspond to the rocky 

underwater areas and purple to part of the sunglint area and part of the graduation of depth 

from the rocky, yellow areas to a more sandy bottom.  Blue corresponds to the area shown in 

a photograph (Figure 3.10) taken by the author on a recent visit there.  This area contains 

sticks and tree limbs protruding from the water. 

 This process of subdivision of endmembers in the N-dimensional visualizer is 

continued, using various combinations of the PC Bands, until most of the ROI is covered by 

individual spectrally unique endmembers.  Then other ROIs in the scene are created until all 

areas of interest from the Real Band images and the PC Band images are defined and 

spectrally unique.   
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Blue

Purple

Yellow

 
Figure 3.9.  Blue corresponds well the tree limbs in Figure 3.10.  Yellow appears to be a very 
rocky bottom, as seen in Figure 3.2.  Purple is a graduation of depth to a more sandy bottom 
mixed with sunglint areas. 
  

 
Figure 3.10.  A digital photograph of the blue ROI in Figure 3.9, taken by the author.  
The white box shows a region of protruding limbs and sticks. 
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 Deep water and land are of no interest to this work, as the purpose is to obtain shallow 

water bathymetry.  A land mask is created using Band 172 (1990.34 nm) to select the 

brightest pixels, and mask them from the image.  Deep water, which is black in the IR, is 

selected in a similar manner and those data are masked.  The shallow water region mean 

spectra are subsequently input into the ENVI maximum likelihood algorithm.  The maximum 

likelihood algorithm statistically classifies pixels between distinct endmembers as one of 

those endmembers based on relative abundance of each endmember in that pixel.  Figure 3.11 

shows the resulting image after running the maximum likelihood classifier, and Figure 3.12 

shows the mean spectra and given name for each endmember, or class.  Note that the “oil 

slick” class was assigned to that region due to its spectral uniqueness and proximity to a  

Main Water
 

Figure 3.11.  Spectrally unique classes of water.  Mean spectra and class names are those 
given in Figure 3.12.  Note that the land and deep water areas (black) are masked off. 
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Figure 3.12.  Plot of mean spectra of classes in Figure 3.11.  Each spectrum is unique.  
Therefore, each will represent a different water column and/or bottom type.  Note the overlap 
of data, between AVIRIS bands 32 (664.30 nm) and 33 (687.00 nm), caused by the overlap 
between AVIRIS spectrometers. 

 

marina.  “Sticks in water” refers to the aforementioned area in Figure 3.10.  “VSW” refers to 

various regions of Very Shallow Water.  Note that in Figure 3.12, a sensor artifact becomes 

apparent.  The AVIRIS sensor uses four different spectrometers to cover the 400 to 2450 nm 

range.  There is one spectrometer overlap that affects this work – that between AVIRIS bands 

32 (664.30 nm) and 33 (687.00 nm).  Therefore, in order to have continuous data to compare 

to HYDROLIGHT and to ultimately assimilate in the computer algorithm, AVIRIS bands 1-

32 are kept.   

 At this stage, one would like to use the classified endmembers to determine the IOPs 

and bottom reflectance.  Deep water could be used to determine IOPs (taking glint into 

account).  Unfortunately, the AVIRIS spatial resolutions prevented exploiting the very 

shallow regions in the way Stuffle did.  However, following in situ observations of Lake 
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Tahoe, the “Main Water” category of Figures 3.11 and 3.12 has a bottom composed of mostly 

sand and some rock.  Stuffle et al.  (1996) derived the bottom reflectance of wet sandy areas 

using the 210-band HYDICE sensor based on the water-leaving radiance of areas with very 

little water.  This work first assumes that the bottom of this side of Lake Tahoe was made up 

of the identical type of sand, and used this same spectrum as an input for bottom reflectance.  

Figure 3.13 shows the reflectance spectrum used for wet sand, taken from Stuffle et al.  

(1996) HYDICE data.  The HYDICE spectrum needed to be converted to match the AVIRIS 

spectral coverage.  Note that in addition to instrumental (and atmospheric) differences, the  

HYDICE data were taken approximately 1 hour before the AVIRIS flight.  Therefore, the 

errors in calculating reflectance for HYDICE will differ from the errors in the AVIRIS 

calculation. 
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Figure 3.13.  Bottom reflectance 
spectrum, taken from HYDICE and 
convolved to AVIRIS 
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 Kappus et al.  (1996) indicates that the chlorophyll content near the surface of Lake 

Tahoe is usually 0.2 mg/m3.  Therefore, the second assumption is made here that chlorophyll 

concentration is homogeneous throughout the water column, and has a value of 0.2 mg/m3.  

The third assumption in this problem is that the water contains nil amounts of scattering 

particulates, as it is an alpine lake, and wind speeds have a negligible effect on disturbing the 

bottom. 

 Whereas Stuffle et al.  (1996) showed 4 distinct ROIs, this much larger region of Lake 

Tahoe contains many more spectrally unique areas.  Water constituents and bottom types, 

along with corresponding spectra of the other ROIs aside from “Main Water”, were not 

available and could not be determined.  As little is known about the other shallow regions in 

this ROI, the focus of this thesis became the “Main Water” region.  So, now the bottom 

reflectance, dA , in Equation 2.8, for the “Main Water” is known, or assumed for one area.  

This is where the depth calculation is performed.  This leaves the diffuse attenuation 

coefficient, dK , to be determined. 

D. USING HYDROLIGHT TO DERIVE dK  

 HYROLIGHT was run assuming Type I infinitely deep water and calculating 

geometric depths.  A separate FORTRAN subroutine that fixed the value of chlorophyll at 

0.20 mg/m3 was also used.  Had chlorophyll values not been fixed, HYDROLIGHT would 

normally allow chlorophyll content to vary with depth.  Table 3.1 shows the values input to 

the algorithm.  Predefined AVIRIS wavelengths were input at which HYDROLIGHT would 

compute dK , in order to match MODTRAN outputs.   
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Table 3.1.  Input values to HYDROLIGHT.  Output is dK . 

 Once HYDROLIGHT was set to compute dK  values, the output in Figure 3.14 was 

produced.  Note that dK  behaves as expected – as wavelengths become more red, more 

visible light is absorbed, resulting in a higher diffuse attenuation value. 

Wavelength (microns)

Chlorophyll = 0.20 mg/m3

Pure Sea Water (Type 1)

Diffuse Attenuation Coefficient (K )d

K
 (

m
)

d
-1

 
 

Figure 3.14.  Diffuse attenuation coefficient, convolved to AVIRIS bands, using a constant 
chlorophyll value, assuming Type I water. 

 HYDROLIGHT Parameter Value 
Phase Function Pure Water (2) 

Water Depth Infinite 
Bottom Reflectance 0.10 
Output Depth Type Geometric 
Number of Depths   

(Depths Used) 
8 

(0, 0.01, 0.10, 0.11, 0.5, 0.51, 1.0, 1.01) 
Julian Day 173 
Latitude 39.14° N 

Longitude 120.19° W 
Time of Day 1900 Z 

Compute Zenith Angle Yes 
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E. ASSUMPTION ON WATER COLUMN IRRADIANCE REFLECTANCE 

 Finally, the variable wR  in Equations 2.7 and 2.8 must be accounted for.  This is the 

portion of the volumetric contribution to wL  that comes from backscattered light from 

constituents in the water column.  For the “Main Water” region of interest, based on a priori 

knowledge of the region itself, the assumption is made that the water column contains very 

few particulates that scatter light.  Therefore, any attenuation of the visible light entering the 

water is due to a combination of chlorophyll and/or the water itself, i.e., absorbing materials.  

Therefore, 0wR ≈ .  This assumption would not necessarily apply to the “VSW”, “Sticks in 

Water”, “Shallow Water”, and “Oil Slick” areas of Figures 3.11 and 3.12; therefore 0wR ≠  in 

these regions (more a priori knowledge of those areas would be needed).  However, since the 

focus is on the “Main Water” ROI, for which we can assume, Equation 2.8 can be rewritten 

as: 

( ) ( ) ( ) ( )
1 1 1

ln ln 0 ln 0ln
   

2 2 2

n n n
d d

d d d

A R RA
z

nK nK nK
λ λλ λ
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 
= 

 
∑     (3.1)  

 So, lastly, ( )0R −  must be evaluated to solve Equation 3.1.  The next section will 

show two different ways to do this – one using the aforementioned method of obtaining 

MODTRAN-produced values, and the other using the imagery itself to directly determine 

reflectance just below the water’s surface. 
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F. DETERMINING ( )0R −   

 Two methods are presented below to evaluate ( )0R − , one using MODTRAN, 

coupled with Equations 2.3 and 2.6; and the other directly from the AVIRIS data itself, using 

brightness values.  The MODTRAN approach was not ultimately used for the depth 

calculation, but is shown below for completeness. 

1.  Using MODTRAN  

MODTRAN was run to produce three important inputs to the depth calculation: 

pL (path radiance) and aT (atmospheric transmittance) from Equation 2.6; 

and dE (downwelling irradiance) from Equation 2.3 that will permit determination of ( )0R −  

in Equation 2.7.  Note that for this calculation wsL  is assumed to equal zero, since the 

AVIRIS data was taken very close to noon local time, and the sensor was at nadir, 

minimizing direct reflectance off the water surface.  Table 3.2 shows the values input to 

MODTRAN for each of the two runs, one for pL , and the other for dE .  aT  is a by-product of 

the first run.  Of note is that when diffuse sky irradiance, AE  from Figure 2.5, was converted 

to sky radiance, the resulting values were two orders of magnitude smaller than pL , and 

therefore disregarded in this calculation. 

Since MODTRAN computes values at 1 nm separation, and AVIRIS bandwidths 

are ~9 nm, the MODTRAN data must be convolved to the corresponding AVIRIS bands, and 

hence lose resolution.  Figure 3.15 shows a graphical representation of the 3 MODTRAN- 
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Table 3.2.  Input values to MODTRAN.  Output was pL , dE , and aT . 
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Figure 3.15.  Graphical outputs of MODTRAN for pL , dE , and aT . 
 

MODTRAN Parameter Path Radiance 
 

Downwelling Irradiance 
 

Geographical/Seasonal Model Midlatitude 
Summer 

Midlatitude  
Summer 

Atmospheric Path Vertical/Slant Vertical/Slant Path to Space 
Scattering Single Multiple 

CO2 Mixing Ratio 360 ppmv 360 ppmv 
Type of Extinction Rural Rural 

Seasonal Aerosol Profile Spring-Summer 
(2) 

Spring-Summer 
(2) 

Visibility 5 km 10 km 
Altitude of Surface Relative to Sea 

Level 
1.905 km 1.905 km 

Initial Altitude 21 km 1.905 km 
Final Altitude 1.905 km 100 km 

Initial Zenith Angle 180° 20.6° 
Julian Day 173 173 
Scattering Mie Mie 
Latitude 39° N 39° N 

Longitude 120° W 120° W 
Time of Day 1900 Z 1900 Z 

Frequency Range 10000-25000 cm-1 4000-25000 cm-1 
Frequency Increment 15 cm-1 15 cm-1 
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produced variables needed.  The dots are the MODTRAN output, while the line plot 

represents the MODTRAN output convolved to AVIRIS bands.  Note the spectrometer 

overlap artifact between 650 and 700 nm. 

Finally, all three of these variables may be compiled in the final algorithm to 

determine depth.  This somewhat tedious approach depends on a number of assumptions 

about the atmospheric conditions, and did not seem well suited to the data at hand (many dark 

pixels), resulting in negative values for reflectance.  A more appropriate way of extracting the 

reflectance just below the water surface is presented next. 

2.  Converting AVIRIS radiance data to reflectance – flat fielding* 

The first 40 AVIRIS bands are input to an algorithm that extracts the brightest 

0.5% and the darkest 0.5% pixels from each of the 40 bands, with the darkest pixels taken to 

be over ground locations of zero reflectance.  Hence, these pixels give the sky radiance (no 

other contributions to dL ).  Figure 3.16 shows the extrema of pixel brightness.  In this 

manner, a “scale” of reflectance is created.  The algorithm consists of taking the darkest 

pixels from each band and assigning a reflectance of zero to them; and the brightest pixels are 

assigned a value of one.  Then, the radiance of the darkest pixel is subtracted from every 

pixel in the image, acting to “re-scale” the image.  Finally, all pixels in the image are 

“normalized” by the difference between the brightest and darkest pixels, and multiplied by 

100; now, the scene is in reflectance space.  Algebraically: 

                                                

* The ENVI tutorial illustrates the widely varying results one can obtain in a radiance-to-
reflectance calculation with different techniques. 
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Figure 3.16.  Minimum 
and maximum 
reflectances of the 99th 
percentile of the 
brightest and darkest 
first 40 AVIRIS bands.  
Every remaining 
reflectance value falls in 
between. 

 

(AVIRIS radiance value – sky radiance value) x 100   (3.2) 
(Brightest radiance value – sky radiance value) 
 

Briefly, MODTRAN and flat fielding are compared.  Figure 3.17(a) shows the 

comparison of the minimum path radiances, while Figure 3.17(b) shows the ranges of 

radiance values for each method.  It appears that MODTRAN, as run above, has produced 

radiances that are too large.  Figure 3.17(b) differences are primarily due to the AVIRIS 

bandwidths. 

Figure 3.18 is a histogram of the total number of occurrences of varying 

reflectances from 0 to greater than 100.  To note, the brightest pixels in each scene were those 

covering the area of snow to the northwest of Tahoe City (white patches in Figure 3.2).  The  
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Figure 3.17.  Comparison of flat field results to MODTRAN calculations. a) (left) Minimum 
radiance compared to MODTRAN path radiance.  b) (right) Flat field max-min compared to 
MODTRAN irradiance*transmission. 

 

darkest pixels varied - in the first 5 bands, they tended to be the “Oil Slick” regions of 

Figures 3.11 and 3.12; and in the higher bands, they tended to be areas of the water.  Note 

that this approach allows reflectance to exceed 100%, but for a very small number of pixels. 

Now, to explore the new reflectance space data, a PCA was done on the newly 

created reflectance bands, in order to look at the deep and shallow water areas.  Figure 

3.19(a) is PC Band 2 in reflectance space with 2 different ROIs – a part of the Main Water 

region we are interested in computing depth for, and parts of the deeper water – along with 

their mean spectra.  Note that these spectra are computed in reflectance space and are  
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Figure 3.18.  Histogram showing the 
distribution of reflectance values for 
the scene.  Note that darkest pixels 
tend to be deep water, and brightest 
are snow cover on land. 

  

therefore unrelated to the spectra computed in radiance space in Figure 3.12.  Note the region 

of separation between the mean spectra for both ROIs in Figure 3.19(b).  This separation in 

spectra is due to the bottom reflectance contribution of the Main Water region.  Also, note 

that below 420 nm, an obvious sensor artifact exists, creating bogus data.  Above 600 nm, 

there is no bottom reflectance component emerging from the data.  Therefore, it was 

concluded that the only good data to use for the depth calculation was between 420 and 600 

nm, which corresponds to AVIRIS bands 5 to 24.   
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(a) (b) 

Figure 3.19.  (a) New ROIs in PC reflectance space band 2, chosen over the Main Water 
region from Figure 3.14 and deeper water.  (b) Mean spectra of the two ROIs in (a).  Note 
the separation between them, mainly due to the bottom reflectance.  Below 420 nm a 
sensor artifact is apparent. 

 

G. ASSIMILATING DATA TO DERIVE DEPTH 

 Now, based on Equation 3.1, a computer algorithm was devised that assimilated the 

three variables, dA , dK , and ( )0R − , and applied to AVIRIS bands 5 to 24.  The major 

elements of the equation are shown in Table 3.3.  The data outputs and results are discussed 

in Chapter IV. 

 As a practical matter, since there is only one bottom type assumed, Equation 3.1 

shows that we can ignore the bottom reflectance for the given calculation.  The bottom 

reflectance term, summed for the spectrum shown in Figure 3.13, gave an offset of 5.9 m.  

After much effort, all that was needed was remote sensing reflectance and dK . 
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Computer Algorithm to Derive Water Depth

Convert raw depths to image

Output histogram and relative depth values

Apply Equation 3.1 over AVIRIS bands 5-24

Input HYDROLIGHT-generated diffuse attenuation coefficient

Input bottom reflectance (wet sand spectrum for this case) from spectral library

Input AVIRIS reflectance data

 
 

Table 3.3.  The major steps of the computer algorithm that reveals water depth. 
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IV. RESULTS AND DISCUSSION 

 Of note, the computer algorithm was applied to the entire region in Figure 3.11, with 

only land masked out.  This was done for illustrative purposes only – the results in the Main 

Water region are the only portion expected to be accurate.   

A.  COMPARISON OF RESULTS TO USGS BATHYMETRIC CHART 

 Upon executing the computer algorithm, a histogram was first produced to indicate 

the relative depth (with respect to some fixed point) of all the pixels.  Figure 4.1 shows 

interesting implications of the data.  Note the range and distribution of all pixel values.  The 

range is from approximately –20 to 5 m.  The Main Water region shows its own specific 

Gaussian distribution near the shallow region of the histogram, while a large distribution of 

the deep water pixels, sunglint, and sensor artifacts make up the majority of the pixels.  

Again, the only region for which the calculation would be expected to be accurate is the Main 

Water region depicted in Figure 3.11 – the calculated values in the remaining regions are 

shown only for completeness. 

 Since 5 m was the highest point in the relative depth range (with land areas having 

been masked out), it was assumed that the highest point in the remaining water scenes is zero.  

So, 5 m was subtracted from all values, producing the depth image shown in Figure 4.2.   

 Figure 4.3 is the United States Geological Survey (USGS) bathymetric chart 

corresponding to the Main Water and VSW areas of Figure 3.11.  Figure 4.2 was cropped to 

approximately the same area as the one shown in Figure 4.3, and the result is given in Figure 

4.4. 
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Figure 4.1.  Depth histogram showing the depth calculation algorithm 
results as it applies to all ROIs in Figure 3.11, including deep water areas 
(but not land). 

 
 Comparing Figures 4.3 and 4.4, the “Main Water” region in the USGS chart 

(converted to meters) varies from 10 to 15 m.  The spectral algorithm output varies from 7 to 

11 m in this same region: the algorithm produced values are offset from those on the 

published USGS chart, but show a similar range of variation*.  Comparing Figures 4.2 and 

4.3, values are off as expected, greatly in the “Sticks in water” and “Oil slick” regions.  This 

is due to the fact that the water column itself is not homogeneous, in addition to differences in 

bottom type.  Major differences should ultimately be due to two factors: 

                                                

* There are some indications that the range of depths produced by the algorithm is some 30-
50% less than the actual range in the "Main Water" region. 
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Figure 4.2.  The algorithm outputs for depth.  Note, for this scene, deep water and sunglint are not 
masked out as they were in Figure 3.11.  Also, the Main Water region from Figure 3.11 is the only 
region that is expected to have reasonably accurate results. 

 

• errors in dK  will introduce an overall proportionality (Equation 2.8), and 

• errors in bottom reflectance will produce an overall offset. 

B. SOURCES OF ERROR AND LIMITATIONS 

 Possible sources of error.  There are many possible sources of error to this calculation.  

Aside from geographical coordinate and coastline misalignment, most were likely from 

assumptions that went into this problem.  Notably, the assumption that the entire water 

column under each pixel was homogeneous and contains nil scattering constituents ( )0wR =  
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may not be accurate.  Choosing a constant value for chlorophyll implies that organisms are 

found uniformly throughout the water column, which is not true.  Also, the default 

HYDROLIGHT model used is intended for use in salt water, not fresh water. 

 

 
Figure 4.3.  USGS (January, 1987) bathymetric chart for the Main Water and VSW areas of Figure 
3.11.  Soundings are in feet. 
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Figure 4.4.  Portion of Figure 4.2 corresponding to the USGS chart in Figure 4.3.  Depth scale 
is in meters. 

 

 Limitations.  Perhaps the biggest limitation of using this method is the under-

determined nature of the problem and the two necessary ingredients to solve it – the bottom 

type and chlorophyll/particulate concentration.  A priori knowledge of the bottomtype, and 

acquisition of the corresponding bottom reflectance spectrum from a spectral library, is the 

preferred method for obtaining bottom reflectance for use in the computer algorithm.  

However, through tedious data analysis, it is possible to extract a good estimate of the bottom 

material with a higher spatial resolution sensor (Stuffle et al.  1996). 

 As far as chlorophyll/particulate concentration, the variability throughout the water 

column should be known, especially for the more turbulent and euphotic coastal regions 
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where it can vary dramatically over depth.  In these cases, wR  will make a significant 

contribution to dL  and cannot be discounted. 

 The other important limitation, mostly due to the determination of bottom type, is the 

cumbersome “finessing” of the data that must be done to input into the computer algorithm.  

The ideal scenario would be one where this process is automated, but convolving of the 

MODTRAN and HYDROLIGHT outputs to fit the AVIRIS sensor channels, along with 

conversion of AVIRIS radiance data to reflectance data (and the many possible methods to do 

this), makes this algorithm unique for AVIRIS only (not HYDICE or the other types of 

hyperspectral sensors) and in itself generates errors.   

C. FUTURE RESEARCH  

 One possible area for future research would be the application of the computer 

algorithm to the littoral areas of the world, starting with a simpler region (such as clear 

tropical waters devoid of heavy chlorophyll) and working toward more turbulent and 

euphotic coastal zones.   

 Another endeavor would be the comparison of this method to that of the LANDSAT 

algorithm.  LANDSAT data can be used in a similar method to compute water depth using 

Band 2 (green) and interpolating values of brightness to water depth. 

 Again, the most tedious part of this work was identifying bottom types.  But, the U.  

S.  Navy has a potential solution on the way – the Hyperspectral Remote Sensing Technology 

(HRST) program.  Wilson and Davis (1998) describe HRST as the program where the Naval 

EarthMap Observer (NEMO) satellite, due to launch in mid-2000, will carry the 210-channel 
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Coastal Imaging Spectrometer (COIS) to provide images of littoral regions of the world.  

Then, the Optical Real-time Adaptive Spectral Identification System (ORASIS) will crop 

these images to a more manageable size, and will compare the spectra in the scene to a 

database corresponding to physical objects.  The spectra will be “unmixed”, and the scene 

elements derived.  With a resolution down to 5 m, this database will have huge implications 

for many areas of research, including the important input for bottom reflectance into the 

bathymetry problem.  A final area of research would be the comparison of HRST bottom 

types to those found through PCA analysis, once these data become available. 
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